skip to main content


Search for: All records

Creators/Authors contains: "Schmidt, K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A concise and measurable set of FAIR (Findable, Accessible, Interoperable and Reusable) principles for scientific data is transforming the state-of-practice for data management and stewardship, supporting and enabling discovery and innovation. Learning from this initiative, and acknowledging the impact of artificial intelligence (AI) in the practice of science and engineering, we introduce a set of practical, concise, and measurable FAIR principles for AI models. We showcase how to create and share FAIR data and AI models within a unified computational framework combining the following elements: the Advanced Photon Source at Argonne National Laboratory, the Materials Data Facility, the Data and Learning Hub for Science, and funcX, and the Argonne Leadership Computing Facility (ALCF), in particular the ThetaGPU supercomputer and the SambaNova DataScale®system at the ALCF AI Testbed. We describe how this domain-agnostic computational framework may be harnessed to enable autonomous AI-driven discovery.

     
    more » « less
  2. Large-language models (LLMs) such as GPT-4 caught the interest of many scientists. Recent studies suggested that these models could be useful in chemistry and materials science. To explore these possibilities, we organized a hackathon. This article chronicles the projects built as part of this hackathon. Participants employed LLMs for various applications, including predicting properties of molecules and materials, designing novel interfaces for tools, extracting knowledge from unstructured data, and developing new educational applications. The diverse topics and the fact that working prototypes could be generated in less than two days highlight that LLMs will profoundly impact the future of our fields. The rich collection of ideas and projects also indicates that the applications of LLMs are not limited to materials science and chemistry but offer potential benefits to a wide range of scientific disciplines. 
    more » « less
    Free, publicly-accessible full text available August 8, 2024
  3. ABSTRACT

    PG 1553 + 113 is one of the few blazars with a convincing quasi-periodic emission in the gamma-ray band. The source is also a very high energy (VHE; >100 GeV) gamma-ray emitter. To better understand its properties and identify the underlying physical processes driving its variability, the MAGIC Collaboration initiated a multiyear, multiwavelength monitoring campaign in 2015 involving the OVRO 40-m and Medicina radio telescopes, REM, KVA, and the MAGIC telescopes, Swift and Fermi satellites, and the WEBT network. The analysis presented in this paper uses data until 2017 and focuses on the characterization of the variability. The gamma-ray data show a (hint of a) periodic signal compatible with literature, but the X-ray and VHE gamma-ray data do not show statistical evidence for a periodic signal. In other bands, the data are compatible with the gamma-ray period, but with a relatively high p-value. The complex connection between the low- and high-energy emission and the non-monochromatic modulation and changes in flux suggests that a simple one-zone model is unable to explain all the variability. Instead, a model including a periodic component along with multiple emission zones is required.

     
    more » « less
  4. null (Ed.)
    ABSTRACT We present a catalogue of 22 755 objects with slitless, optical, Hubble Space Telescope (HST) spectroscopy from the Grism Lens-Amplified Survey from Space (GLASS). The data cover ∼220 sq. arcmin to 7-orbit (∼10 ks) depth in 20 parallel pointings of the Advanced Camera for Survey’s G800L grism. The fields are located 6 arcmin away from 10 massive galaxy clusters in the HFF and CLASH footprints. 13 of the fields have ancillary HST imaging from these or other programs to facilitate a large number of applications, from studying metal distributions at z ∼ 0.5, to quasars at z ∼ 4, to the star formation histories of hundreds of galaxies in between. The spectroscopic catalogue has a median redshift of 〈z〉 = 0.60 with a median uncertainty of $\Delta z / (1+z)\lesssim 2{{\ \rm per\ cent}}$ at $F814\mathit{ W}\lesssim 23$ AB. Robust continuum detections reach a magnitude fainter. The 5 σ limiting line flux is $f_{\rm lim}\approx 5\times 10^{-17}\rm ~erg~s^{-1}~cm^{-2}$ and half of all sources have 50 per cent of pixels contaminated at ≲1 per cent. All sources have 1D and 2D spectra, line fluxes/uncertainties and identifications, redshift probability distributions, spectral models, and derived narrow-band emission-line maps from the Grism Redshift and Line Analysis tool (grizli). We provide other basic sample characterizations, show data examples, and describe sources and potential investigations of interest. All data and products will be available online along with software to facilitate their use. 
    more » « less
  5. null (Ed.)
    ABSTRACT We study the projected spatial offset between the ultraviolet continuum and Ly α emission for 65 lensed and unlensed galaxies in the Epoch of Reionization (5 ≤ z ≤ 7), the first such study at these redshifts, in order to understand the potential for these offsets to confuse estimates of the Ly α properties of galaxies observed in slit spectroscopy. While we find that ∼40 per cent of galaxies in our sample show significant projected spatial offsets ($|\Delta _{\rm {Ly}\alpha -\rm {UV}}|$), we find a relatively modest average projected offset of $|\widetilde{\Delta }_{\rm {Ly}\alpha -\rm {UV}}|$  = 0.61 ± 0.08 proper kpc for the entire sample. A small fraction of our sample, ∼10 per cent, exhibit offsets in excess of 2 proper kpc, with offsets seen up to ∼4 proper kpc, sizes that are considerably larger than the effective radii of typical galaxies at these redshifts. An internal comparison and a comparison to studies at lower redshift yielded no significant evidence of evolution of $|\Delta _{\rm {Ly}\alpha -\rm {UV}}|$ with redshift. In our sample, ultraviolet (UV)-bright galaxies ($\widetilde{L_{\mathrm{ UV}}}/L^{\ast }_{\mathrm{ UV}}=0.67$) showed offsets a factor of three greater than their fainter counterparts ($\widetilde{L_{\mathrm{ UV}}}/L^{\ast }_{\mathrm{ UV}}=0.10$), 0.89 ± 0.18 versus 0.27 ± 0.05 proper kpc, respectively. The presence of companion galaxies and early stage merging activity appeared to be unlikely causes of these offsets. Rather, these offsets appear consistent with a scenario in which internal anisotropic processes resulting from stellar feedback, which is stronger in UV-brighter galaxies, facilitate Ly α fluorescence and/or backscattering from nearby or outflowing gas. The reduction in the Ly α flux due to offsets was quantified. It was found that the differential loss of Ly α photons for galaxies with average offsets is not, if corrected for, a limiting factor for all but the narrowest slit widths (<0.4 arcsec). However, for the largest offsets, if they are mostly perpendicular to the slit major axis, slit losses were found to be extremely severe in cases where slit widths of ≤1 arcsec were employed, such as those planned for James Webb Space Telescope/NIRSpec observations. 
    more » « less